|
姓名:于国栋 |
职称:副教授 |
职务:无 |
性别:男
|
学历:研究生 |
Email:yugd000@nenu.edu.cn |
出生日期:1987-12-21 |
电话:
|
办公地点:环境楼六楼-量子科学中心 |
教育经历
博士 凝聚态物理 吉林大学 2010.09 -2015.06
学士 物理学 吉林大学 2006.09 -2010.06
工作经历
2015.10 - 2017.09 博士后 鲁汶大学(法语) 比利时
2018.05 - 2020.10 访问学者 奈梅亨大学 荷兰
2017.11 - 2021.10 博士后 武汉大学 中国
2021.11至今 副教授 东北师范大学 中国
主要科研方向
低维体系电子结构的理论研究。
文章列表
1. Polarization-dependent selection rules and optical spectrum atlas of twisted bilayer graphene quantum dots
Y. Wang, G. Yu, M. Rösner, M. I. Katsnelson, H.-Q. Lin, S. Yuan, arXiv:2110.01323 (2021).
2. Interlayer hybridization in graphene quasicrystal and other bilayer graphene systems
G. Yu, Y. Wang, M. I. Katsnelson, H.-Q. Lin, and S. Yuan, arXiv:2105.06588 (2021).
3. Electronic properties and quasi-particle model of monolayer MoSi2N4
Z. Wang, X. Kuang, G. Yu, P. Zhao, H. Zhong, S. Yuan, Phys. Rev. B 104, 155110 (2021).
4. Structure–Composition–Property Relationships in Antiperovskite Nitrides: Guiding a Rational Alloy Design
H. Zhong, C. Feng, H. Wang, D. Han, G. Yu, W. Xiong, Y. Li, M. Yang, G. Tang, S. Yuan, ACS Appl. Mater. Interfaces 13, 48516 (2021).
5. Beyond the Single Parabolic Band Model: Providing Insight into the High Thermoelectric Efficiency of Yb14MSb11 (M = Mg, Al)
C. J. Perez, M. Wood, F. Ricci, G. Yu, T. Vo, S. K. Bux, G. Hautier, G.-M. Rignanese, G. J. Snyder, S. M. Kauzlarich, Science Advances 7, eabe9439 (2021).
6. Tunability of multiple ultraflat bands and effect of spin-orbit coupling in twisted bilayer transition metal dichalcogenides
Z. Zhan, Y. Zhang, P. Lv, H. Zhong, G. Yu, F. Guinea, J. Á. Silva-Guillén*, and S. Yuan*, Phys. Rev. B 102, 241106(R) (2020).
7. Electronic structures of 30° twisted double bilayer graphene
G. Yu, Z. Wu, Z. Zhan, M. I. Katsnelson, S. Yuan*, Phys. Rev. B 102, 115123 (2020).
8. Pressure and electric field dependence of quasicrystalline electronic states in 30° twisted bilayer graphene
G. Yu*, M. I. Katsnelson, S. Yuan*, Phys. Rev. B 102, 045113 (2020).
9. Dodecagonal bilayer graphene quasicrystal and its approximants
G. Yu, Z. Wu, Z. Zhan, M. I. Katsnelson and S. Yuan*, npj Computational Materials 5, 122 (2019).
10. Computationally driven high-throughput identification of CaTe and Li3Sb as promising candidates for high-mobility p-type transparent conducting materials
V. Ha, G. Yu, F. Ricci, D. Dahliah, M. J. van Setten, M. Giantomassi, G.-M. Rignanese, and G. Hautier*, Phys. Rev. Mater. 3, 034601 (2019).
11. Origins of ultralow thermal conductivity in 1-2-1-4 quaternary selenides
J. Kuo, U. Aydemir, J.-H. Pöhls, F. Zhou, G. Yu, A. Faghaninia, F. Ricci, M. A. White, G.-M. Rignanese, G. Hautier, A. Jaing and G. J. Snyder*, Journal of Materials Chemistry A 7, 2589 (2019).
12. Interplay between in-plane and flexural phonons in electronic transport of two-dimensional semiconductors
A. N. Rudenko*, A. V. Lugovskoi, A. Mauri, G. Yu, S. Yuan*, and M. I. Katsnelson, Phys. Rev. B 100, 075417 (2019).
13. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators
D. Broberg, B. Medasani, N. E. R. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta, G. Hautier*, Computer Physics Communications 226, 165 (2018).
14. Electronic and mechanical properties of few-layer borophene
H. Zhong, K. Huang, G. Yu, and S. Yuan*, Phys. Rev. B 98, 054104 (2018).
15. Tunable half-metallicity and edge magnetism of H-saturated InSe nanoribbons
W. Zhou, G. Yu, A. Rudenko and S. Yuan*, Phys. Rev. Materials 2, 114001 (2018).
16. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions
A. Faghaninia, G. Yu, U. Aydemir, M. Wood, W. Chen, G-M Rignanese, G J Snyder, G. Hautier, A Jain*, Phys. Chem. Chem. Phys. 19, 6743 (2017).
17. Resonant Bonding, Multiband Thermoelectric Transport, and Native Defects in n-Type BaBiTe3–xSex (x=0, 0.05, and 0.1)
S. Maier , S. Ohno, G. Yu, S. D. Kang, T. C. Chasapis, V. A. Ha, S. A. Miller, D. Berthebaud, M. G. Kanatzidis, G.-M. Rignanese, G. Hautier, G. J. Snyder, and F. Gascoin*, Chemistry of Materials 30, 174 (2017).
18. Two dimensional Kagome phosphorus and its edge magnetism: an ab-initio study
G. Yu, L. Jiang, and Y. Zheng*, J. Phys.: Condens. Matter 27, 255006 (2015).
19. First-principles study on 3d transition metal atom adsorption onto graphene: the role of the extended line defect
G. Yu, M. Zhu, and Y. Zheng*, J. Mater. Chem. C 2, 9767 (2014).
20. Surface magnetism of the carbon foam: An ab-initio theoretical study
G. Yu, L. Jiang, and Y. Zheng*, Appl. Phys. Lett. 105, 061601 (2014).
21. Electronic properties of four typical zigzag-edged graphyne nanoribbons
G. Yu, Z. Liu, W. Gao, and Y. Zheng*, J. Phys.: Condens. Matter 25, 285502 (2013).
22. Structural, electronic and magneticproperties of transition-metal embedded zigzag-edged graphene nanoribbons
G. Yu, X. Lv, L. Jiang, W. Gao, and Y. Zheng*, J. Phys. D: Appl. Phys. 46, 375303 (2013).
23. Line-defect–induced Fano interference in an armchair graphene nanoribbon
W. Gong*, X. Sui, L. Zhu, G. Yu, X. Chen, EPL (Europhysics Letters) 103, 18003 (2013).
24. A graphene quantum dot realized by an armchair graphene nanoribbon with line defect
X. Sui, Z. Li, W. Gong*, G. Yu, X. Chen, physica status solidi (RRL)-Rapid Research Letters 7, 579 (2013).
25. A valley-filtering switch based on the Stone-Wales defect array in carbon nanotube
X. Lü, G. Yu, H. Yao, Y. Zheng*, EPL (Europhysics Letters) 103, 47008 (2013).
26. Fano effect and bound state in continuum in electron transport through an armchair graphene nanoribbon with line defect
W. Gong*, X. Sui, Y. Wang, G. Yu, X. Chen, Nanoscale research letters 8, 330 (2013).
27. Suppression of edge magnetism in a titanium-embedded zigzag graphene nanoribbon
G. Yu, X. Lv, Y. Zheng*, and W. Tian, J. Appl. Phys. 111, 033707 (2012).
28. A simple tight-binding model for typical graphyne structures
Z. Liu, G. Yu, H. Yao, L. Liu, L. Jiang, and Y. Zheng*, New J. Phys. 14, 113007 (2012).
29. RKKY interaction in AB-stacked multilayer graphene
L. Jiang, X. Lü, W. Gao, G. Yu, Z. Liu, Y. Zheng*, J. Phys.: Condens. Matter 24, 206003 (2012).
30. Dirac-equation description of the electronic states of graphene with a line defect: Wave-function connection condition
L. Jiang, G. Yu, W. Gao, Z. Liu, Y. Zheng*, Phys. Rev. B 86, 65433 (2012).